Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Front Public Health ; 11: 1170085, 2023.
Article in English | MEDLINE | ID: covidwho-20231258

ABSTRACT

Purpose: The study aimed to identify potential risk factors for family transmission and to provide precautionary guidelines for the general public during novel Coronavirus disease 2019 (COVID-19) waves. Methods: A retrospective cohort study with numerous COVID-19 patients recruited was conducted in Shanghai. Epidemiological data including transmission details, demographics, vaccination status, symptoms, comorbidities, antigen test, living environment, residential ventilation, disinfection and medical treatment of each participant were collected and risk factors for family transmission were determined. Results: A total of 2,334 COVID-19 patients participated. Compared with non-cohabitation infected patients, cohabitated ones were younger (p = 0.019), more commonly unvaccinated (p = 0.048) or exposed to infections (p < 0.001), and had higher rates of symptoms (p = 0.003) or shared living room (p < 0.001). Risk factors analysis showed that the 2019-nCov antigen positive (OR = 1.86, 95%CI 1.40-2.48, p < 0.001), symptoms development (OR = 1.86, 95%CI 1.34-2.58, p < 0.001), direct contact exposure (OR = 1.47, 95%CI 1.09-1.96, p = 0.010) were independent risk factors for the cohabitant transmission of COVID-19, and a separate room with a separate toilet could reduce the risk of family transmission (OR = 0.62, 95%CI 0.41-0.92, p = 0.018). Conclusion: Patients showing negative 2019-nCov antigen tests, being asymptomatic, living in a separate room with a separate toilet, or actively avoiding direct contact with cohabitants were at low risk of family transmission, and the study recommended that avoiding direct contact and residential disinfection could reduce the risk of all cohabitants within the same house being infected with COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Quarantine , Retrospective Studies , China/epidemiology , Risk Factors
2.
Front Med (Lausanne) ; 9: 973688, 2022.
Article in English | MEDLINE | ID: covidwho-2274296

ABSTRACT

Background: JAK (Janus kinases) inhibitors have been proposed as a promising treatment option for the coronavirus disease-2019 (COVID-19). However, the benefits of JAK inhibitors and the optimum thereof for COVID-19 have not been adequately defined. Methods: Databases were searched from their inception dates to 17 June 2022. Eligible studies included randomized controlled trials and observational studies. Extracted data were analyzed by pairwise and network meta-analysis. The primary outcome was the coefficient of mortality. Results: Twenty-eight studies of 8,206 patients were included and assessed qualitatively (modified Jadad and Newcastle-Ottawa Scale scores). A pairwise meta-analysis revealed that JAK inhibitors effectively reduced the mortality (OR = 0.54; 95% CI: 0.46-0.63; P < 0.00001; I 2 = 32%) without increasing the risk of adverse events (OR = 1.02; 95% CI: 0.88-1.18; P = 0.79; I 2 = 12%). In a network meta-analysis, clinical efficacy benefits were seen among different types of JAK inhibitors (baricitinib, ruxolitinib, and tofacitinib) without the observation of a declined incidence of adverse events. The assessment of rank probabilities indicated that ruxolitinib presented the greatest likelihood of benefits regarding mortality and adverse events. Conclusion: JAK inhibitors appear to be a promising treatment for COVID-19 concerning reducing mortality, and they do not increase the risk of adverse events vs. standard of care. A network meta-analysis suggests that mortality benefits are associated with specific JAK inhibitors, and among these, ruxolitinib presents the greatest likelihood of having benefits for mortality and adverse events. Systematic review registration: [www.crd.york.ac.uk/prospero], identifier [CRD42022343338].

3.
BMC Infect Dis ; 23(1): 53, 2023 Jan 24.
Article in English | MEDLINE | ID: covidwho-2214543

ABSTRACT

BACKGROUND: The effect of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) on mortality was preliminarily explored through the comparison of ACEIs/ARBs with non-ACEIs/ARBs in patients with coronavirus disease 2019 (COVID-19). Reaching a conclusion on whether previous ACEI/ARB treatment should be continued in view of the different ACE2 levels in the comparison groups was not unimpeachable. Therefore, this study aimed to further elucidate the effect of ACEI/ARB continuation on hospital mortality, intensive care unit (ICU) admission, and invasive mechanical ventilation (IMV) in the same patient population. METHODS: We searched PubMed, the Cochrane Library, Ovid, and Embase for relevant articles published between December 1, 2019 and April 30, 2022. Continuation of ACEI/ARB use after hospitalization due to COVID-19 was considered as an exposure and discontinuation of ACEI/ARB considered as a control. The primary outcome was hospital mortality, and the secondary outcomes included 30-day mortality, rate of ICU admission, IMV, and other clinical outcomes. RESULTS: Seven observational studies and four randomized controlled trials involving 2823 patients were included. The pooled hospital mortality in the continuation group (13.04%, 158/1212) was significantly lower than that (22.15%, 278/1255) in the discontinuation group (risk ratio [RR] = 0.45; 95% confidence interval [CI], 0.28-0.72; P = 0.001). Continuation of ACEI/ARB use was associated with lower rates of ICU admission (10.5% versus 16.2%, RR = 0.63; 95% CI 0.5-0.79; P < 0.0001) and IMV (8.2% versus 12.5%, RR = 0.62; 95% CI 0.46-0.83, P = 0.001). Nevertheless, the effect was mainly demonstrated in the observational study subgroup (P < 0.05). Continuing ACEI/ARB had no significant effect on 30-day mortality (P = 0.34), acute myocardial infarction (P = 0.08), heart failure (P = 0.82), and acute kidney injury after hospitalization (P = 0.98). CONCLUSION: Previous ACEI/ARB treatment could be continued since it was associated with lower hospital deaths, ICU admission, and IMV in patients with COVID-19, although the benefits of continuing use were mainly shown in observational studies. More evidence from multicenter RCTs are still needed to increase the robustness of the data. Trial registration PROSPERO (CRD42022341169). Registered 27 June 2022.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , COVID-19 , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Renin-Angiotensin System , Antihypertensive Agents/therapeutic use , Regression Analysis , Randomized Controlled Trials as Topic , Observational Studies as Topic , Multicenter Studies as Topic
4.
Comput Biol Med ; 154: 106567, 2023 03.
Article in English | MEDLINE | ID: covidwho-2177840

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) and community-acquired pneumonia (CAP) present a high degree of similarity in chest computed tomography (CT) images. Therefore, a procedure for accurately and automatically distinguishing between them is crucial. METHODS: A deep learning method for distinguishing COVID-19 from CAP is developed using maximum intensity projection (MIP) images from CT scans. LinkNet is employed for lung segmentation of chest CT images. MIP images are produced by superposing the maximum gray of intrapulmonary CT values. The MIP images are input into a capsule network for patient-level pred iction and diagnosis of COVID-19. The network is trained using 333 CT scans (168 COVID-19/165 CAP) and validated on three external datasets containing 3581 CT scans (2110 COVID-19/1471 CAP). RESULTS: LinkNet achieves the highest Dice coefficient of 0.983 for lung segmentation. For the classification of COVID-19 and CAP, the capsule network with the DenseNet-121 feature extractor outperforms ResNet-50 and Inception-V3, achieving an accuracy of 0.970 on the training dataset. Without MIP or the capsule network, the accuracy decreases to 0.857 and 0.818, respectively. Accuracy scores of 0.961, 0.997, and 0.949 are achieved on the external validation datasets. The proposed method has higher or comparable sensitivity compared with ten state-of-the-art methods. CONCLUSIONS: The proposed method illustrates the feasibility of applying MIP images from CT scans to distinguish COVID-19 from CAP using capsule networks. MIP images provide conspicuous benefits when exploiting deep learning to detect COVID-19 lesions from CT scans and the capsule network improves COVID-19 diagnosis.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , COVID-19 Testing , SARS-CoV-2 , Pneumonia/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2156963

ABSTRACT

Background JAK (Janus kinases) inhibitors have been proposed as a promising treatment option for the coronavirus disease-2019 (COVID-19). However, the benefits of JAK inhibitors and the optimum thereof for COVID-19 have not been adequately defined. Methods Databases were searched from their inception dates to 17 June 2022. Eligible studies included randomized controlled trials and observational studies. Extracted data were analyzed by pairwise and network meta-analysis. The primary outcome was the coefficient of mortality. Results Twenty-eight studies of 8,206 patients were included and assessed qualitatively (modified Jadad and Newcastle–Ottawa Scale scores). A pairwise meta-analysis revealed that JAK inhibitors effectively reduced the mortality (OR = 0.54;95% CI: 0.46–0.63;P < 0.00001;I2 = 32%) without increasing the risk of adverse events (OR = 1.02;95% CI: 0.88–1.18;P = 0.79;I2 = 12%). In a network meta-analysis, clinical efficacy benefits were seen among different types of JAK inhibitors (baricitinib, ruxolitinib, and tofacitinib) without the observation of a declined incidence of adverse events. The assessment of rank probabilities indicated that ruxolitinib presented the greatest likelihood of benefits regarding mortality and adverse events. Conclusion JAK inhibitors appear to be a promising treatment for COVID-19 concerning reducing mortality, and they do not increase the risk of adverse events vs. standard of care. A network meta-analysis suggests that mortality benefits are associated with specific JAK inhibitors, and among these, ruxolitinib presents the greatest likelihood of having benefits for mortality and adverse events. Systematic review registration [www.crd.york.ac.uk/prospero], identifier [CRD42022343338].

6.
Front Pharmacol ; 13: 964037, 2022.
Article in English | MEDLINE | ID: covidwho-2022839

ABSTRACT

Background: The coronavirus disease of 2019 (COVID-19) is a severe public health issue that has infected millions of people. The effective prevention and control of COVID-19 has resulted in a considerable increase in the number of cured cases. However, little research has been done on a complete metabonomic examination of metabolic alterations in COVID-19 patients following treatment. The current project pursues rigorously to characterize the variation of serum metabolites between healthy controls and COVID-19 patients with nucleic acid turning negative via untargeted metabolomics. Methods: The metabolic difference between 20 COVID-19 patients (CT ≥ 35) and 20 healthy controls were investigated utilizing untargeted metabolomics analysis employing High-resolution UHPLC-MS/MS. COVID-19 patients' fundamental clinical indicators, as well as health controls, were also collected. Results: Out of the 714 metabolites identified, 203 still significantly differed between COVID-19 patients and healthy controls, including multiple amino acids, fatty acids, and glycerophospholipids. The clinical indexes including monocytes, lymphocytes, albumin concentration, total bilirubin and direct bilirubin have also differed between our two groups of participators. Conclusion: Our results clearly showed that in COVID-19 patients with nucleic acid turning negative, their metabolism was still dysregulated in amino acid metabolism and lipid metabolism, which could be the mechanism of long-COVID and calls for specific post-treatment care to help COVID-19 patients recover.

7.
Front Public Health ; 9: 749294, 2021.
Article in English | MEDLINE | ID: covidwho-1566664

ABSTRACT

Objectives: To investigate the epidemiological characteristics and infection routes of new cases in order to provide information for preventing COVID-19 resurgence in areas initially under control. Methods: The information of new symptomatic and asymptomatic patients in Chinese mainland was collected. The location distribution, epidemic course, infection routes and patients' characteristics of outbreaks were described and analyzed. Results: There were 43 new outbreaks with 3,795 symptomatic patients in Chinese mainland from March 21, 2020 to June 13, 2021. These outbreaks mainly occurred in central, border and coastal port cities. The main infection route of first generation indigenous patients was contact with imported cases and contaminated goods or environments. The infection routes of secondary generation patients mainly included family transmission, indoor social gathering infection, nosocomial infection and other infection routes. Family transmission was the most common infection route, and indoor social gathering was the most important reason for the large-scale outbreaks. Conclusions: Strengthen the management of imported patients and staff in high-risk posts was the key point to avoid the first generation indigenous patients. Adequate family isolation, prompt management policies for indoor public place and monitor of population at risk of infection were key strategies for preventing COVID-19 resurgence in areas initially under control.


Subject(s)
COVID-19 , Cross Infection , Epidemics , Cross Infection/epidemiology , Disease Outbreaks , Humans , SARS-CoV-2
9.
Front Med (Lausanne) ; 8: 638201, 2021.
Article in English | MEDLINE | ID: covidwho-1264342

ABSTRACT

Introduction: Noninvasive ventilation (NIV) has been used to alleviate hypoxemia and dyspnea, but there is no consensus on the application of NIV in patients with coronavirus disease 2019 (COVID-19). Some staff use NIV as the rescue therapy which might lead to the adverse outcomes. This study was to identify early factors associated with intubation to help the medical staff select appropriate patients for receiving NIV treatment. Methods: Patients with laboratory-confirmed COVID-19 who were treated with NIV in emergency department or ICU of the Third People's Hospital (the only designated hospital for treating COVID-19 in Shenzhen) between January 1 and August 31, 2020, were retrospectively analyzed. Results: Thirty-nine patients with COVID-19 treated with NIV were included; of them, 16 (41%) received endotracheal intubation and 3 (8%) died. Significant differences were observed between intubated and non-intubated patients in PaO2/FiO2 before NIV initiation, hospitalization duration, NIV as the rescue therapy, and PaO2/FiO2 of ≤200 mmHg after 1-2 h of NIV initiation. Notably, 1-2 h after NIV initiation, a PaO2/FiO2 of ≤200 mmHg (odds ratio [OR], 9.35; 95% confidence interval [CI], 1.84-47.62; P = 0.007) and NIV as the rescue therapy (OR, 5.43; 95% CI, 1.09-27.12; P = 0.039) were the risk factors for intubation. Conclusions: In patients with COVID-19-related acute hypoxemic respiratory failure receiving NIV, close attention should be paid to PaO2/FiO2 after 1-2 h of NIV initiation. Also, using NIV as rescue therapy should draw our awareness that it might delay escalation of respiratory support and lead to adverse outcomes.

10.
Wien Klin Wochenschr ; 132(13-14): 396-399, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-996393

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) occurred in China (mainly in Wuhan, Hubei Province) at the end of December 2019. Henan province is located in the center of China, borders on Hubei province by land in the south with the nearest distance of 200 kilometers to Wuhan. As the inland provinces in mainland China, frequent communication in transportation and population flow make it difficult to confine the pandemic, which is similar to that in the landlocked countries in Europe. The expected cases in Henan were mainly imported. A bundle of intervention strategies were adopted from 26 January 2020 to cut off the spread between the infected patients and the native residents. The pandemic was controlled 2 month later after the bundle of strategies was adopted although the number of cases continued to increase explosively during the first 10 days. A total of 1273 cases were confirmed, 1251 patients were cured, 22 patients died, and 1 patient was still in hospital until 29 March 2020. The peak of daily increased cases was 109 cases. Our data show that COVID-19 is highly infectious and easy to cause an outbreak, but it can be controlled by early effective interventions. A bundle of strategies according to the specific situation of each country is suggested to be implemented as early as possible.


Subject(s)
Coronavirus Infections , Coronavirus , Infection Control , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Europe , Humans , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2
11.
J Clin Invest ; 130(10): 5235-5244, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-969923

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus 2019 (COVID-19) pneumonia. Little is known about the kinetics, tissue distribution, cross-reactivity, and neutralization antibody response in patients with COVID-19. Two groups of patients with RT-PCR-confirmed COVID-19 were enrolled in this study: 12 severely ill patients in intensive care units who needed mechanical ventilation and 11 mildly ill patients in isolation wards. Serial clinical samples were collected for laboratory detection. Results showed that most of the severely ill patients had viral shedding in a variety of tissues for 20-40 days after onset of disease (8/12, 66.7%), while the majority of mildly ill patients had viral shedding restricted to the respiratory tract and had no detectable virus RNA 10 days after onset (9/11, 81.8%). Mildly ill patients showed significantly lower IgM response compared with that of the severe group. IgG responses were detected in most patients in both the severe and mild groups at 9 days after onset, and remained at a high level throughout the study. Antibodies cross-reactive to SARS-CoV and SARS-CoV-2 were detected in patients with COVID-19 but not in patients with MERS. High levels of neutralizing antibodies were induced after about 10 days after onset in both severely and mildly ill patients which were higher in the severe group. SARS-CoV-2 pseudotype neutralization test and focus reduction neutralization test with authentic virus showed consistent results. Sera from patients with COVID-19 inhibited SARS-CoV-2 entry. Sera from convalescent patients with SARS or Middle East respiratory syndrome (MERS) did not. Anti-SARS-CoV-2 S and N IgG levels exhibited a moderate correlation with neutralization titers in patients' plasma. This study improves our understanding of immune response in humans after SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/metabolism , Coronavirus Infections/blood , Pneumonia, Viral/blood , Viral Load , Virus Shedding , Adult , Aged , Antibody Specificity , COVID-19 , Cross Reactions , Female , Humans , Kinetics , Male , Middle Aged , Pandemics , SARS-CoV-2 , Severity of Illness Index
12.
Clin Respir J ; 15(3): 280-286, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-901006

ABSTRACT

Fangcang shelter (Cabin) hospitals were set up in order to cope with the rapid growth of confirmed cases of coronavirus disease 2019 (COVID-19) in Wuhan, China at a time when there were insufficient beds in designated hospitals. This paper describes the layout and functioning of a typical Fangcang shelter hospital, Wuhan Dongxihu Fangcang shelter Hospital, where the author has worked, the working mechanism, experience and effectiveness. A set of patient management protocols was employed for daily practice, which included preset criteria and procedure for admission, examination, medication treatment, referral and discharge. WeChat platform with different groups was used for communication, ward round, test appointments and patient data communication. All these procedures and mechanisms of working enabled the effective management of a larger number of patients with relatively few doctors. As a result, 442 mild or moderate COVID-19 patients in Hall C were successfully managed by a team of 40 doctors, with 246 (56%) patients were cured and discharged from the Fangcang shelter hospital while the remaining 196 (44%) patients were referred on to designated hospitals for further treatment. The reasons for referral included poor resolution in computerized tomography (CT) scan (59%), persistently positive severe acute respiratory syndrome coronavirus 2 by PCR after 9 days of admission (16%), deterioration in CT image (4%), development of dyspnoea (1%) and other (4%) or unclear reasons (16%) due to no record of reasons for referral on the document. There were no deaths and no complaints from the patients in Hall C. In summary, the Fangcang shelter hospital could be run successfully with a set of patient management protocols under conditions of limited facilities and medical staff. It was effective and safe in isolating patients, providing basic medical care and early identification of potential severe cases. This experience may provide a successful example of a working mechanism for the prevention and control of the COVID-19 pandemic worldwide.


Subject(s)
COVID-19/epidemiology , Disease Management , Hospitals, Special/organization & administration , Mobile Health Units/organization & administration , Pandemics , COVID-19/therapy , China/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2
13.
COVID-19 ; : 89-97, 2021.
Article in English | ScienceDirect | ID: covidwho-893385

ABSTRACT

We have been continuously deepening our understanding of 2019 coronavirus disease (COVID-19)—an emerging disease. Further knowledge on varying clinical manifestations, phenotypes, clinical course, acute and chronic conditions, susceptibility, as well as research to improve our ability in identification of susceptible populations and tracking the direction of evolution of the virus, are urgently needed.

14.
COVID-19 ; : 75-88, 2021.
Article in English | ScienceDirect | ID: covidwho-893384

ABSTRACT

The control of infectious disease is more dependent on prevention than on treatment. The first task is to isolate the source of infection. Suspected patients, mildly affected patients, and close contacts of confirmed cases should be placed under medical observation. No matter whether there is an etiological diagnosis or not, suspected patients should be kept in strict isolation. It is difficult to identify the source of infection completely unless compulsory measures are taken, such as door-to-door screening. Therefore, the focus of prevention is how to cut off the transmission routes. Given that droplet transmission and contact transmission appear to be the main routes of transmission of COVID-19, the general public need to refrain from going outdoors as much as possible, wear masks in public, and keep good hygiene including frequent handwashing, and wiping and disinfecting door handles and elevator buttons. It is recommended to stop using central air-conditioning because COVID-19 may also spread through aerosol transmission.

15.
COVID-19 ; : 55-74, 2021.
Article in English | ScienceDirect | ID: covidwho-893383

ABSTRACT

Suspected and confirmed cases should be treated in a designated hospital with effective isolation and protective conditions. The isolation condition of suspected cases should be the highest, and treatment should be carried out in a single room instead of mixed accommodation. Only confirmed cases should be admitted to the same ward, and critically ill patients should be admitted to ICU as soon as possible. At this stage, asymptomatic infected persons should also be isolated for observation. If a severe epidemic occurs in the area and medical resources are limited, mild cases and asymptomatic infected persons can be treated and observed at home, but registration and management should be carried out by the local disease prevention and control institutions and community health service centers, so as to guide, observe, and treat the quarantine at home. Moreover, the referral and transfer of severe patients should be safe, evaluated well, and no problems should be caused on the way.

16.
COVID-19 ; : 41-54, 2021.
Article in English | ScienceDirect | ID: covidwho-893382

ABSTRACT

The diagnosis of COVID-19 is based on epidemiological history, clinical manifestations, and pathogenic confirmation.

17.
COVID-19 ; : 13-39, 2021.
Article in English | ScienceDirect | ID: covidwho-893381

ABSTRACT

The incubation period from exposure to symptoms is generally 7–14 days;the shortest is 1 day, the longest is up to 20 days. Fever, fatigue, and dry cough appear to be the most common symptoms at illness onset, but these symptoms, which also present in influenza and other respiratory infections, are nonspecific. Upper respiratory tract symptoms like nasal obstruction and rhinorrhea are relatively rare. In general, the majority of patients have a satisfactory prognosis with a few patients being critically ill. Fatal cases are commonly seen in the elderly and those with chronic underlying diseases, such as diabetes and heart disease.

18.
COVID-19 ; : 7-11, 2021.
Article in English | ScienceDirect | ID: covidwho-893380

ABSTRACT

Combined with clinical manifestations and chest imaging features, such as dry cough and abnormal coagulation function, chest imaging mainly showed multiple small patches and interstitial changes at the early stage, with obvious extravasation and less exudative lesions, which developed into multiple ground-glass opacity and infiltrating shadows in the lungs. In critically ill patients receiving tracheal intubation, infiltration fluid is rare in the trachea, which is different from influenza and avian influenza. We assume that pathogenesis of COVID-19 lung injury could mainly be impairment of the lung interstitium and vascular endothelium. Although ARDS can be found in some patients, exudative lesions are relatively less.

19.
COVID-19 ; : 1-6, 2021.
Article in English | ScienceDirect | ID: covidwho-893379

ABSTRACT

Viral infectious diseases remain a major challenge for human health. Following the emergence of a new coronavirus pneumonia, more than 10,000 species of wild viruses have been mentioned by mass media, but only a few are well recognized. In recent decades, human beings have constantly faced the challenge of bacterial and viral infections. The most common pathogens of new infectious diseases are viruses, the latest being COVID-19. Therefore, we should pay close attention to the severity of respiratory virus infection. There are many common viruses that can cause respiratory infections, including influenza-related viruses, human metapneumovirus, measles virus, rhinovirus, enterovirus, coronavirus, respiratory tract syncytial virus, adenovirus, cytomegalovirus, herpes simplex virus, etc. In particular, there are more than 100 species of coronaviruses.

20.
Clinical eHealth ; 3:7-15, 2020.
Article in English | PMC | ID: covidwho-822402

ABSTRACT

The aim is to diagnose COVID-19 earlier and to improve its treatment by applying medical technology, the “COVID-19 Intelligent Diagnosis and Treatment Assistant Program (nCapp)” based on the Internet of Things. Terminal eight functions can be implemented in real-time online communication with the “cloud” through the page selection key. According to existing data, questionnaires, and check results, the diagnosis is automatically generated as confirmed, suspected, or suspicious of 2019 novel coronavirus (2019-nCoV) infection. It classifies patients into mild, moderate, severe or critical pneumonia. nCapp can also establish an online COVID-19 real-time update database, and it updates the model of diagnosis in real time based on the latest real-world case data to improve diagnostic accuracy. Additionally, nCapp can guide treatment. Front-line physicians, experts, and managers are linked to perform consultation and prevention. nCapp also contributes to the long-term follow-up of patients with COVID-19. The ultimate goal is to enable different levels of COVID-19 diagnosis and treatment among different doctors from different hospitals to upgrade to the national and international through the intelligent assistance of the nCapp system. In this way, we can block disease transmission, avoid physician infection, and epidemic prevention and control as soon as possible.

SELECTION OF CITATIONS
SEARCH DETAIL